Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 21(38): 13145, 2015 Sep 14.
Article in English | MEDLINE | ID: mdl-26332225

ABSTRACT

Invited for the cover of this issue are the groups of Joel S. Miller at the University of Utah and Juan J. Novoa at the University of Barcelona. The image depicts a visualization of the energy difference between the new 2e(-) /6c and the established 2e(-) /4c bond for C2 and D2h conformations, respectively, for π-[TCNE]2 (2-) . Read the full text of the article at 10.1002/chem.201501963.

2.
Chemistry ; 21(38): 13240-5, 2015 Sep 14.
Article in English | MEDLINE | ID: mdl-26223479

ABSTRACT

[NMe4 ]2 [TCNE]2 (TCNE=tetracyanoethenide) formed from the reaction of TCNE and (NMe4 )CN in MeCN has νCN IR absorptions at 2195, 2191, 2172, and 2156 cm(-1) and a νCC absorption at 1383 cm(-1) that are characteristic of reduced TCNE. The TCNEs have an average central CC distance of 1.423 Šthat is also characteristic of reduced TCNE. The reduced TCNE forms a previously unknown non-eclipsed, centrosymmetric π-[TCNE]2 (2-) dimer with nominal C2 symmetry, 12 sub van der Waals interatomic contacts <3.3 Å, a central intradimer separation of 3.039(3) Å, and comparable intradimer C⋅⋅⋅N distances of 3.050(3) and 2.984(3) Å. The two pairs of central C⋅⋅⋅C atoms form a ∢C-C⋅⋅⋅C-C of 112.6° that is substantially greater than the 0° observed for the eclipsed D2h π-[TCNE]2 (2-) dimer possessing a two-electron, four-center (2e(-) /4c) bond with two C⋅⋅⋅C components from a molecular orbital (MO) analysis. A MO study combining CAS(2,2)/MRMP2/cc-pVTZ and atoms-in-molecules (AIM) calculations indicates that the non-eclipsed, C2 π-[TCNE]2 (2-) dimer exhibits a new type of a long, intradimer bond involving one strong C⋅⋅⋅C and two weak C⋅⋅⋅N components, that is, a 2e(-) /6c bond. The C2 π-[TCNE]2 (2-) conformer has a singlet, diamagnetic ground state with a thermally populated triplet excited state with J/kB =1000 K (700 cm(-1) ; 86.8 meV; 2.00 kcal mol(-1) ; H=-2 JSa ⋅Sb ); at the CAS(2,2)/MBMP2 level the triplet is computed to be 9.0 kcal mol(-1) higher in energy than the closed-shell singlet ground state. The results from CAS(2,2)/NEVPT2/cc-pVTZ calculations indicate that the C2 and D2h conformers have two different local metastable minima with the C2 conformer being 1.3 kcal mol(-1) less stable. The different natures of the C2 and D2h conformers are also noted from the results of valence bond (VB) qualitative diagram that shows a 10e(-) /6c bond with one C⋅⋅⋅C and two C⋅⋅⋅N bonding components for the C2 conformer as compared to the 6e(-) /4c bond for the D2h conformer with two C⋅⋅⋅C bonding components.

3.
Acta Crystallogr Sect E Struct Rep Online ; 70(Pt 6): o692-3, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-24940269

ABSTRACT

In the title compound, C11H9BrO, the cyclo-pentenone ring is almost planar with an r.m.s. deviation of 0.0097 Å. The largest inter-ring torsion angles [2.4 (3), 1.3 (3) and 3.53 (2)°] reveal only a very small twist between the rings, and suggest that the two rings are conjugated. The mol-ecule is slightly bowed, as shown by the small dihedral angle between the rings [5.3 (1)°]. The crystal packing pattern consists of parallel sheets that stack parallel to the ac plane. Each sheet consists of mol-ecules that pack side-to-side with the same relative orientation of phenyl and cyclo-pentenone rings along the a- and c-axis directions. Slipped side-to-side, face-to-face and edge-to-face inter-actions exist between pairs of sheets with edge-to-edge and edge-to-face O⋯H-C(sp (2)) weak hydrogen-bond contacts. A relatively short edge-to-face contact (2.77 Å) also exists between pairs of sheets.

4.
Inorg Chem ; 52(18): 10583-94, 2013 Sep 16.
Article in English | MEDLINE | ID: mdl-23981238

ABSTRACT

The reaction of first row transition M(II) ions with KSCN in various solvents form tetrahedral (NMe4)2[M(II)(NCS)4] (M = Fe, Co), octahedral trans-M(II)(NCS)2(Sol)4 (M = Fe, V, Ni; Sol = MeCN, THF), and K4[M(II)(NCS)6] (M = V, Ni). The reaction of M(NCS)2(OCMe2)2 (M = Cr, Mn) in MeCN and [Co(NCMe)6](BF4)2 and KSCN in acetone and after diffusion of diethyl ether form M(NCS)2(Sol)2 that structurally differ as they form one-dimensional (1-D) (M = Co; Sol = THF), two-dimensional (2-D) (M = Mn; Sol = MeCN), and three-dimensional (3-D) (M = Cr; Sol = MeCN) extended structures. 1-D Co(NCS)2(THF)2 has trans-THFs, while the acetonitriles have a cis geometry for 2- and 3-D M(NCS)2(NCMe)2 (M = Cr, Mn). 2-D Mn(NCS)2(NCMe)2 is best described as Mn(II)(µ(N,N)-NCS)(µ(N,S)-NCS)(NCMe)2 [= Mn2(µ(N,N)-NCS)2(µ(N,S)-NCS)2(NCMe)4] with the latter µ(N,S)-NCS providing the 2-D connectivity. In addition, the reaction of Fe(NCS)2(OCMe2)2 and 7,7,8,8-tetracyanoquino-p-dimethane (TCNQ) forms 2-D structured Fe(II)(NCS)2TCNQ. The magnetic behavior of 1-D Co(NCS)2(THF)2 can be modeled by a 1-D Fisher expression (H = -2JS(i)·S(j)) with g = 2.4 and J/kB = 0.68 K (0.47 cm(-1)) and exhibit weak ferromagnetic coupling. Cr(NCS)2(NCMe)2 and Fe(II)(NCS)2TCNQ magnetically order as antiferromagnets with Tc's of 37 and 29 K, respectively, while Mn(NCS)2(NCMe)2 exhibits strong antiferromagnetic coupling. M(NCS)2(THF)4 and K4[M(NCS)6] (M = V, Ni) are paramagnets with weak coupling between the octahedral metal centers.

5.
Inorg Chem ; 51(18): 9655-65, 2012 Sep 17.
Article in English | MEDLINE | ID: mdl-22928927

ABSTRACT

Linear chain thiocyanate complexes of M(NCS)(2)(OCMe(2))(2) (M = Fe, Mn, Cr) composition have been prepared and structurally, chemically, and magnetically characterized. Fe(NCS)(2)(OCMe(2))(2) exhibits metamagnetic-like behavior, and orders as an antiferromagnet at 6 K. The Mn and Cr compounds are antiferromagnets with T(c) of 30 and 50 K, respectively, with J/k(B) = -3.5 (-2.4 cm(-1)) and -9.9 K (-6.9 cm(-1)), respectively, when fit to one-dimensional (1-D) Fisher chain model (H = -2JS(i)·S(j)). Co(NCS)(2) was prepared by a new synthetic route, and powder diffraction was used to determine its structure to be a two-dimensional (2-D) layer with µ(N,S,S)-NCS motif, and it is an antiferromagnet (T(c) = 22 K; θ = -33 K for T > 25 K). M(NCS)(2)(OCMe(2))(2) (M = Fe, Mn) and Co(NCS)(2) react with (NBu(4))(TCNE) in dichloromethane to form M(TCNE)[C(4)(CN)(8)](1/2), and in acetone to form M[C(4)(CN)(8)](OCMe(2))(2) (M = Fe, Mn, Co). These materials possess µ(4)-[C(4)(CN)(8)](2-) that form 2-D layered structural motifs, which exhibit weak antiferromagnetic coupling. Co(TCNE)[C(4)(CN)(8)](1/2) behaves as a paramagnet with strong antiferromagnetic coupling (θ = -50 K).


Subject(s)
Nitriles/chemistry , Organometallic Compounds/chemistry , Thiocyanates/chemistry , Transition Elements/chemistry , Models, Molecular , Temperature
6.
Inorg Chem ; 50(21): 10546-8, 2011 Nov 07.
Article in English | MEDLINE | ID: mdl-21967154

ABSTRACT

The structural and magnetic properties of dinuclear [Co(II)(NCMe)(5)Co(II)(NCS)(4)]·MeCN have been investigated. The structure consists of an octahedral Co(II)(NCMe)(5) center connected to a tetrahedral Co(II)(NCS)(4) center bridged by a µ(1,3)-NCS(-) ligand. The bridging NCS(-) weakly couples the pair of S = (3)/(2) Co(II) spin sites, as evidenced by the magnetic data being best fit by the Curie-Weiss expression with θ = -15.5 K.

SELECTION OF CITATIONS
SEARCH DETAIL
...